Review: Bleaching Of Dyes Used In The Textile Industry With TAML Catalysts And Oxidants. 

Matthew Mills, PhD.

Introduction

It is estimated that textile production uses between 80-150 liters of water per kilogram of cloth produced.1 The increasing scarcity of pure water supplies in many regions of the world have led environmentally conscious companies to pursue water reuse. However, high levels of contaminants, especially deeply colored dyes, in these produced waters present a challenge to producing high quality textiles.1,2 Many technologies have emerged to address this issue, including chemical, electrochemical, and biological treatment processes.3 One advanced oxidation process (AOP) that offers considerable advantages in capital cost, flexibility, and effectiveness is the use of TAML catalysts.

TAML catalysts are a family of iron complexes that activate a wide variety of oxidants to chemically modify organic and inorganic compounds. Multiple generations of these catalysts were developed by Terry Collins at Carnegie Mellon University and are currently being commercialized by Sudoc. The structures of these catalysts are shown in Figure 1. While these catalysts can be used for a number of purposes, the most effective and extensively studied applications of these catalysts to date is in the degradation of contaminants in water streams. These catalysts have been shown to effectively degrade explosives4, pharmaceuticals5-8, plastic additives9, and a large number of dyes commonly used in the textile industry. This technology has been commercialized by Sudoc and is now marketed as a New Environmental Approach to Treatment (NEAT).

 

Figure 1. Generic structure of TAML (left) and NewTAML (right) catalysts.

 

REFERENCES

  1. R Ananthashankar, A. G. Production, Characterization and Treatment of Textile Effluents: A Critical Review. J. Chem. Eng. Process Technol. 2013, 05 (01). 

  2. Slama, H. Ben; Bouket, A. C.; Pourhassan, Z.; Alenezi, F. N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl. Sci. 2021, 11 (14), 1–21. 

  3. Holkar, C. R.; Jadhav, A. J.; Pinjari, D. V.; Mahamuni, N. M.; Pandit, A. B. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J. Environ. Manage. 2016, 182, 351–366.

  4. Kundu, S.; Chanda, A.; Khetan, S. K.; Ryabov, A. D.; Collins, T. J. TAML Activator/Peroxide-Catalyzed Facile Oxidative Degradation of the Persistent Explosives Trinitrotoluene and Trinitrobenzene in Micellar Solutions. Environ. Sci. Technol. 2013, 47 (10), 5319–5326. 

  5. Somasundar, Y.; Shen, L. Q.; Hoane, A. G.; Tang, L. L.; Mills, M. R.; Burton, A. E.; Ryabov, A. D.; Collins, T. J. Structural, Mechanistic, and Ultradilute Catalysis Portrayal of Substrate Inhibition in the TAML–Hydrogen Peroxide Catalytic Oxidation of the Persistent Drug and Micropollutant, Propranolol. J. Am. Chem. Soc. 2018, 140 (38), 12280–12289. 

  6. Mills, M. R.; Arias-Salazar, K.; Baynes, A.; Shen, L. Q.; Churchley, J.; Beresford, N.; Gayathri, C.; Gil, R. R.; Kanda, R.; Jobling, S.; Collins, T. J. Removal of Ecotoxicity of 17α-Ethinylestradiol Using TAML/Peroxide Water Treatment. Sci. Rep. 2015, 5 (1), 10511. 

  7. Somasundar, Y.; Park, M.; Daniels, K. D.; Warner, G. R.; Ryabov, A. D.; Snyder, S. A.; Collins, T. J. Transformative Catalysis Purifies Municipal Wastewater of Micropollutants. 2021, 1, 2155–2163. 

  8. Tang, L. L.; Denardo, M. A.; Schuler, C. J.; Mills, M. R.; Gayathri, C.; Gil, R. R.; Kanda, R.; Collins, T. J. Homogeneous Catalysis under Ultradilute Conditions: TAML/NaClO Oxidation of Persistent Metaldehyde. J. Am. Chem. Soc. 2017, 139 (2), 879–887. 

  9. Onundi, Y.; Drake, B. A.; Malecky, R. T.; DeNardo, M. A.; Mills, M. R.; Kundu, S.; Ryabov, A. D.; Beach, E. S.; Horwitz, C. P.; Simonich, M. T.; Truong, L.; Tanguay, R. L.; Wright, L. J.; Singhal, N.; Collins, T. J. A Multidisciplinary Investigation of the Technical and Environmental Performances of TAML/Peroxide Elimination of Bisphenol A Compounds from Water. Green Chem. 2017, 125, submitted. 

  10. Chahbane, N.; Popescu, D.-L.; Mitchell, D. A.; Chanda, A.; Lenoir, D.; Ryabov, A. D.; Schramm, K.-W.; Collins, T. J. Fe III –TAML-Catalyzed Green Oxidative Degradation of the AzodyeOrange II by H 2 O 2 and Organic Peroxides: Products, Toxicity, Kinetics, and Mechanisms. Green Chem. 2007, 9 (1), 49–57. 

  11. Beach, E. S.; Malecky, R. T.; Gil, R. R.; Horwitz, C. P.; Collins, T. J. Fe-TAML/Hydrogen Peroxide Degradation of Concentrated Solutions of the Commercial Azo Dye Tartrazine. Catal. Sci. Technol. 2011, 1 (3), 437–443. 

  12. Chahbane, N.; Lenoir, D.; Souabi, S.; Collins, T. J.; Schramm, K. W. FeIII-TAML-Catalyzed Green Oxidative Decolorization of Textile Dyes in Wastewater. Clean - Soil, Air, Water 2007, 35 (5), 459–464. 

  13. Horwitz, C. P.; Fooksman, D. R.; Vuocolo, L. D.; Gordon-Wylie, S. W.; Cox, N. J.; Collins, T. J. Ligand Design Approach for Securing Robust Oxidation Catalysts. J. Am. Chem. Soc. 1998, 120 (19), 4867–4868. 

  14. Chanda, A.; Ryabov, A. D.; Mondal, S.; Alexandrova, L.; Ghosh, A.; Hangun-Balkir, Y.; Horwitz, C. P.; Collins, T. J. Activity-Stability Parameterization of Homogeneous Green Oxidation Catalysts. Chem. - A Eur. J. 2006, 12 (36), 9336–9345. 

  15. Banerjee, D.; Apollo, F. M.; Ryabov, A. D.; Collins, T. J. The Impact of Surfactants on FeIII-TAML-Catalyzed Oxidations by Peroxides: Accelerations, Decelerations, and Loss of Activity. Chem. - A Eur. J. 2009, 15 (39), 10199–10209. 

  16. Ghosh, A.; Mitchell, D. A.; Chanda, A.; Ryabov, A. D.; Popescu, D. L.; Upham, E. C.; Collins, G. J.; Collins, T. J. Catalase-Peroxidase Activity of Iron(III)-TAML Activators of Hydrogen Peroxide. J. Am. Chem. Soc. 2008, 130 (45), 15116–15126.

Previous
Previous

Watch: Textile Dye Removal Demonstration

Next
Next

Transformative Catalysis Purifies Municipal Wastewater of Micropollutants